The Diffie-Hellman problem and generalization of Verheul's theorem
نویسنده
چکیده
Bilinear pairings on elliptic curves have been of much interest in cryptography recently. Most of the protocols involving pairings rely on the hardness of the bilinear Diffie-Hellman problem. In contrast to the discrete log (or Diffie-Hellman) problem in a finite field, the difficulty of this problem has not yet been much studied. In 2001, Verheul [66] proved that on a certain class of curves, the discrete log and Diffie-Hellman problems are unlikely to be provably equivalent to the same problems in a corresponding finite field unless both Diffie-Hellman problems are easy. In this paper we generalize Verheul’s theorem and discuss the implications on the security of pairing based systems. We also include a large table of distortion maps.
منابع مشابه
Diffie-Hellman type key exchange protocols based on isogenies
In this paper, we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves. The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $, is a straightforward generalization of elliptic curve Diffie-Hellman key exchange. The method uses commutativity of the endomorphism ring $ End(E) $. Then using dual isogenies, we propose...
متن کاملGeneralizations of Verheul's theorem to asymmetric pairings
For symmetric pairings e : G × G → GT , Verheul proved that the existence of an efficiently-computable isomorphism φ : GT → G implies that the Diffie-Hellman problems in G and GT can be efficiently solved. In this paper, we explore the implications of the existence of efficiently-computable isomorphisms φ1 : GT → G1 and φ2 : GT → G2 for asymmetric pairings e : G1 ×G2 → GT . We also give a simpl...
متن کاملA NEW PROTOCOL MODEL FOR VERIFICATION OF PAYMENT ORDER INFORMATION INTEGRITY IN ONLINE E-PAYMENT SYSTEM USING ELLIPTIC CURVE DIFFIE-HELLMAN KEY AGREEMENT PROTOCOL
Two parties that conduct a business transaction through the internet do not see each other personally nor do they exchange any document neither any money hand-to-hand currency. Electronic payment is a way by which the two parties transfer the money through the internet. Therefore integrity of payment and order information of online purchase is an important concern. With online purchase the cust...
متن کاملSoundness of Symbolic Equivalence for Modular Exponentiation
In this paper, we study the Dynamic Decisional Diffie-Hellman (3DH) problem, a powerful generalization of the Decisional Diffie-Hellman (DDH) problem. Our main result is that DDH implies 3DH. This result leads to significantly simpler proofs for protocols by relying directly on the more general problem. Our second contribution is a computationally sound symbolic technique for reasoning about pr...
متن کاملThe Group Diffie-Hellman Problems(Extended abstract)
In this paper we study generalizations of the Diffie-Hellman problems recently used to construct cryptographic schemes for practical purposes. The Group Computational and the Group Decisional DiffieHellman assumptions not only enable one to construct efficient pseudorandom functions but also to naturally extend the Diffie-Hellman protocol to allow more than two parties to agree on a secret key....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 52 شماره
صفحات -
تاریخ انتشار 2008